7. (2 points each) Circle “True” or “False” for each of the following problems. Circle “True” only if the statement is always true. No explanation is necessary.

(a) If \(f(x) \) is increasing, then \(f'(x) \) is increasing.

 True False

(b) Suppose \(f'(a) \geq f'(b) \) whenever \(a \leq b \). Then \(f \) has no points of inflection.

 True False

(c) If \(f(x) \) is defined for all \(x \), then \(f'(x) \) is defined for all \(x \).

 True False

(d) If \(f \) and \(g \) are functions whose second derivatives are defined, then \((fg)'' = fg'' + f''g \).

 True False

(e) If the radius of a circle is increasing at a constant rate, then so is the area.

 True False

(f) If \(f(x) \) has an inverse function, then the derivative of the inverse function is \(1/f'(x) \).

 True False

(g) If \(f'(1) = -3.4 \) and \(g'(1) = 4.1 \), then the function \(h(x) = f(x) + g(x) \) is increasing at \(x = 1 \).

 True False

(h) The graph of \(y = xe^{-0.1x} \) has an inflection point at \(x = 20 \).

 True False