2. (10 points) Suppose f has a continuous derivative whose values are given in the following table.

x	0	1	2	3	4	5	6	7	8	9	10
$f^{\prime}(x)$	5	2	1	-2	-5	-3	-1	2	3	1	-1

(a) Using the data in the table, estimate x-coordinates of indicated critical points of f for $0<$ $x<10$.

Since f^{\prime} is continuous, f^{\prime} is never undefined and the only critical points are values of x for which $f^{\prime}(x)=0$. From the table above, we see that f^{\prime} changes sign between $x=2$ and $x=3$, between $x=6$ and $x=7$, and between $x=9$ and $x=10$. So, we estimate f has 3 critical points at:

- $x \simeq 2.5$,
- $x \simeq 6.5$,
- $x \simeq 9.5$.
(b) For each critical point above, indicate if it is a local maximum of f, a local minimum, or neither.
- $x \simeq 2.5$ is a local maximum.
(Since f^{\prime} changes sign from positive to negative as one moves from left to right in a small neighborhood about $x \simeq 2.5$).
- $x \simeq 6.5$ is a local minimum.
- $x \simeq 9.5$ is a local maximum.
(c) Approximate interval(s) between $x=0$ and $x=10$, if any, for which the data indicates that the graph of f is concave up?

The function f is concave up wherever f^{\prime} is increasing (or where $f^{\prime \prime}$ is positive). Looking at the table, we see that f^{\prime} is increasing approximately for

$$
4.5 \leq x \leq 8.5 \text {. }
$$

So, we estimate f is concave up when $4.5 \leq x \leq 8.5$.
(d) If $f(0)=4$, approximate the value of $f(0.2)$.

The best linear approximation for f at the point $(0,4)$ is given by $y=f^{\prime}(0) x+b=5 x+b$. Substituting $x=0, y=4$ in this linear equation, we find $b=4$.
Therefore,

$$
f(x) \simeq 5 x+4 \text { near } x=0 .
$$

So, $f(0.2) \simeq 5(0.2)+4=5$, is the approximate value of $f(0.2)$.

