3. (18 points)
(a) (2 pts) If $f(x)=a x^{4}-x^{3}+d(a \neq 0)$ and f has a global maximum, what must be the sign of a ? Explain.

The sign of a must be negative for f to have a global maximum. If a were positive, then $f \rightarrow \pm \infty$ as $x \rightarrow \pm \infty$, eliminating the possibility of a global maximum.
(b) (4 pts) Determine all critical points of f.

- $f^{\prime}(x)=4 a x^{3}-3 x^{2}=x^{2}(4 a x-3)$,
- f is a polynomial, so the only critical points are those x for which $f^{\prime}(x)=0$,
- $f^{\prime}(x)=0 \Rightarrow x=0$ or $x=3 /(4 a)$.

Hence, the critical points are $x=0$ and $x=3 /(4 a), a<0$.
(c) (4 pts) For what value of x does the maximum occur? Show your work.

Since

$$
f^{\prime \prime}(x)=12 a x^{2}-6 x=x(12 a x-6)
$$

- $f^{\prime \prime}(3 /(4 a))=9 /(4 a)<0($ as $a<0)$, so there is a local maximum at $x=3 /(4 a)$;
- $f^{\prime \prime}(0)=0$, so the second derivative test does not work for this critical point. Note that for $x>3 /(4 a), f^{\prime}$ is negative, so $x=0$ is neither a max or a min. Since the end behavior of f is toward $-\infty$ as $x \rightarrow \pm \infty$, and $x=3 /(4 a)$ is the only local max, it is the global max.
(d) (4 pts) For what value(s) of x (if any) does f have inflection points?

Since

$$
f^{\prime \prime}(x)=12 a x^{2}-6 x=x(12 a x-6)=0 \quad \text { for } x=0 \text { or } x=1 /(2 a)
$$

these are the two possible inflection points. We test the sign of $f^{\prime \prime}$ to the left and the right of each of these x values. Since $a<0$, we have $1 /(2 a)<0$, also,

$$
\begin{gathered}
f^{\prime \prime}<0 \text { for } x<1 /(2 a) \\
f^{\prime \prime}>0 \quad \text { for } 1 /(2 a)<x<0
\end{gathered}
$$

and

$$
f^{\prime \prime}<0 \quad \text { for } x>0
$$

This means $x=0$ and $x=1 /(2 a)$ are both inflection points, as the sign of $f^{\prime \prime}$ changes around those points.
(e) (4 pts) If $f(0)=4$ and f has a critical point at $x=-\frac{1}{4}$, determine a formula for $f(x)$.

- $f(0)=4 \Rightarrow d=4$;
- Since the only critical points are $x=0$ and $x=3 /(4 a)$, we must have:
$3 /(4 a)=-1 / 4$ or $a=-3$.
So this means,

$$
f(x)=-3 x^{4}-x^{3}+4
$$

