4. (6 points) Find the exact equation of the linear approximation to the curve $f(x)=10 e^{0.4 x}$ having slope equal to 2 .

- We want x so that $f^{\prime}(x)=4 e^{0.4 x}=2$;
- Solving, we find that $x=\ln (0.5) / 0.4$;
- Now, $f(\ln (0.5) / 0.4)=5$;
- So, the linear approximation we want is of the form

$$
f(x) \simeq 5+2(x-\ln (0.5) / 0.4)
$$

5. (10 points) Find the exact coordinates of the point (x, y) where the tangent line to the graph of

$$
y^{3}-x y=-6
$$

is vertical. You should start by differentiating the equation above implicitly with respect to x. Show step-by-step work.

Differentiating implicitly with respect to x we get,

$$
\begin{aligned}
3 y^{2} y^{\prime}-\left[y+x y^{\prime}\right] & =0 \\
y^{\prime}\left(3 y^{2}-x\right)-y & =0 \\
y^{\prime} & =\frac{y}{3 y^{2}-x} .
\end{aligned}
$$

The last expression for y^{\prime} is undefined if $3 y^{2}-x=0$ or $x=3 y^{2}$. We substitute this expression for x in the original equation to get:

$$
\begin{aligned}
y^{3}-3 y^{3} & =-6 \\
y & =3^{1 / 3} .
\end{aligned}
$$

This means that $x=3 y^{2}=3^{5 / 3}$ when $y=3^{1 / 3}$, and so

$$
(x, y)=\left(3^{5 / 3}, 3^{1 / 3}\right)
$$

are the exact coordinates of the point we want.

