6. (12 points) The functions $r=f(t)$ and $V=g(r)$ give the radius and the volume of a commercial hot air balloon that is being inflated for testing. The variables t and r are measured in minutes and feet respectively, while the volume V is measured in cubic feet. The inflation begins at $t=0$.

Use the information on the tables below to answer questions (i)-(iii). (Question (iv) is independent of the tables.)

t	$f(t)$	$f^{\prime}(t)$
0	c	d
30	b	x
60	a	z

r	$g(r)$	$g^{\prime}(r)$
a	b	x
b	c	z
d	x	y

(i) (2 pts.) How fast is the radius of the balloon increasing initially?
\qquad
d $\mathrm{ft} / \mathrm{min}$.
(ii) (2 pts.) Assuming f is always increasing for $0<t<60$, how much time has ellapsed (since inflation began) when the radius is growing by $z \mathrm{ft} / \mathrm{min}$?
60 minutes.
(iii) (3 pts.) How fast is the volume of the balloon increasing a half hour after inflation began?
\qquad $\mathrm{ft}^{3} / \mathrm{min}$.
(iv) (5 pts.) (This item is independent of the previous ones). It turns out that the balloon's surface area increases with the radius by the formula

$$
S=h(r)=4 \pi r^{2}
$$

If the radius of the balloon increases linearly from 5 feet at a rate of 1.5 feet per minute, how fast is the balloon's surface area growing an hour after inflation began? Show your work.

Note first that,

$$
r=f(t)=1.5 t+5 .
$$

Then,

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=60} h(f(t)) & =\left(\left.\frac{d h}{d r}\right|_{r=f(60)}\right)\left(\left.\frac{d f}{d t}\right|_{t=60}\right) \\
& =h^{\prime}(f(60)) f^{\prime}(60) \\
& =h^{\prime}(95) f^{\prime}(60)=h^{\prime}(95)(1.5) \\
& =8 \pi(95)(1.5)=1140 \pi \mathrm{ft}^{2} / \mathrm{min}
\end{aligned}
$$

So the surface area of the balloon is growing at a rate of 1140π square feet per minute one hour after inflation began.

