7. (2 points each) Circle "True" or "FaLSE" for each of the following problems. Circle "True" only if the statement is always true. No explanation is necessary.
(a) If $f(x)$ is increasing, then $f^{\prime}(x)$ is increasing.

True False
(b) Suppose $f^{\prime}(a) \geq f^{\prime}(b)$ whenever $a \leq b$. Then f has no points of inflection.

True False
(c) If $f(x)$ is defined for all x, then $f^{\prime}(x)$ is defined for all x.

True False
(d) If f and g are functions whose second derivatives are defined, then $(f g)^{\prime \prime}=f g^{\prime \prime}+f^{\prime \prime} g$.

True \square
False
(e) If the radius of a circle is increasing at a constant rate, then so is the area.

True False
(f) If $f(x)$ has an inverse function, then the derivative of the inverse function is $1 / f^{\prime}(x)$.

True False
(g) If $f^{\prime}(1)=-3.4$ and $g^{\prime}(1)=4.1$, then the function $h(x)=f(x)+g(x)$ is increasing at $x=1$.
True False
(h) The graph of $y=x e^{-0.1 x}$ has an inflection point at $x=20$.

True False

