1. (4 points each) For the following statements circle True or False. If the statement is always true, explain why it is true. If it is false give an example of when the statement is false. Examples may be formulas or graphs.
(a) If $y(x)$ is a twice differentiable function, then $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$.

True

$$
\text { Consider } y=x^{3}: \frac{d^{2} y}{d x^{2}}=6 x \text {, but }\left(\frac{d y}{d x}\right)^{2}=\left(3 x^{2}\right)^{2}=9 x^{4} .
$$

False
(b) There exists a function $f(x)$ such that $f(x)>0, f^{\prime}(x)<0$, and $f^{\prime \prime}(x)>0$ for all real values of x.

True

Consider the function $f(x)=e^{-x}$.
False
(c) If h is differentiable for all x and $h^{\prime}(a)=0$, then $h(x)$ has a local minimum or local maximum at $x=a$.

True

Consider the function $h(x)=x^{3}$ with $a=0$.
False
(d) If f and g are positive and increasing on an interval I, then f times g is increasing on I.

True

$$
\begin{gathered}
(f g)^{\prime}=f^{\prime} g+g^{\prime} f>0 \\
\text { since } f, f^{\prime}, g \text {, and } g^{\prime} \text { are all positive. }
\end{gathered}
$$

False

