$\mathbf{2}$

- 1. (4 points each) For the following statements circle True or False. If the statement is *always* true, explain why it is true. If it is false give an example of when the statement is false. Examples may be formulas or graphs.
 - (a) If y(x) is a twice differentiable function, then $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$.

True

Consider
$$y = x^3$$
: $\frac{d^2y}{dx^2} = 6x$, but $\left(\frac{dy}{dx}\right)^2 = (3x^2)^2 = 9x^4$.
False

(b) There exists a function f(x) such that f(x) > 0, f'(x) < 0, and f''(x) > 0 for all real values of x.

Consider the function $f(x) = e^{-x}$.

True

False

(c) If h is differentiable for all x and
$$h'(a) = 0$$
, then $h(x)$ has a local minimum or local maximum at $x = a$.

True

Consider the function $h(x) = x^3$ with a = 0. False

(d) If f and g are positive and increasing on an interval I, then f times g is increasing on I.

True

$$(fg)' = f'g + g'f > 0$$

since f, f', g , and g' are all positive.

False