1. (2 points each) For each of the following, circle all the statements which are always true. For the cases below, one statement may be true, or both or neither of the statements may be true.
(a) Let $x=c$ be an inflection point of f. Assume f^{\prime} is defined at c.

- If L is the linear approximation to f near c, then $L(x)>f(x)$ for $x>c$.
- The tangent line to the graph of f at $x=c$ is above the graph on one side of c and below the graph on the other side.
(b) The differentiable function g has a critical point at $x=a$.
- If $g^{\prime \prime}(a)>0$, then a is a local minimum.
- If a is a local maximum, then $g^{\prime \prime}(a)<0$.
(c) The derivative of $g(x)=\left(e^{x}+\cos x\right)^{2}$ is
- $g^{\prime}(x)=2\left(e^{x}-\sin x\right)\left(e^{x}+\cos x\right)$.
- $g^{\prime}(x)=2 e^{2 x}+2\left(e^{x} \cos x-e^{x} \sin x\right)$.
(d) A continuous function f is defined on the closed interval $[a, b]$.
- f has a global maximum on $[a, b]$.
- f has a global minimum on $[a, b]$.
(e) Consider the family of functions $e^{-(x-a)^{2}}$.
- Every function in this family has a critical point at $x=0$.
- Some function in this family has a local maximum at $x=2$.

