- 3. (10 points) Suppose f'(x) is a differentiable increasing function for all x. In each of the following pairs, circle the larger value. In each case, give a **brief** reason for your choice.(Assume that none of the values below are equal for this function and $\Delta x \neq 0$).
 - (a) f'(5) and f'(6)

f' is increasing, and 5 < 6.

(b) f''(5) and 0

f' is increasing, so its derivative f'' is always positive (since $f''(5) \neq 0)$.

(c) $f(5 + \Delta x)$ and $f(5) + f'(5)\Delta x$

Since f''(5) > 0, f is concave up at 5. Therefore its values near 5 are greater than the linear approximation, which is $f(5) + f'(5)\Delta x$.

4. (15 points) Using calculus, find constants a and b in the function $f(x) = axe^{bx}$ such that $f(\frac{1}{3}) = 1$ and the function has a local maximum at $x = \frac{1}{3}$. Once you have found a and b, verify that your answer satisfies the given conditions. Show all work.

Since $f(\frac{1}{3}) = 1$, we have an equation $1 = a(\frac{1}{3})e^{b/3}$, so solving for a gives

$$a = 3e^{-b/3}$$
.

Now for f to have a local maximum at $\frac{1}{3}$, we want $f'(\frac{1}{3}) = 0$ and $f''(\frac{1}{3}) < 0$. Let's solve the first equation, using our expression for a.

$$f'(x) = ae^{bx} + abxe^{bx}$$

$$= 3e^{-b/3}e^{bx} + 3bxe^{-b/3}e^{bx},$$

$$f'\left(\frac{1}{3}\right) = 3e^{-b/3}e^{b/3} + be^{-b/3}e^{b/3}$$

$$= 3 + b.$$

and setting this equal to zero tells us b=-3. Plugging this into the expression for a, we get a=3e.

Here, verify that $f(\frac{1}{3}) = 1$ and $f'(\frac{1}{3}) = 0$. However, most important, check the critical point to see that it is a local maximum. We use the second derivative test, and check $f''(\frac{1}{3}) < 0$:

$$f''(x) = -9ee^{-3x} - 9ee^{-3x} + 27exe^{-3x}$$

$$= -18ee^{-3x} + 27exe^{-3x};$$

$$f''\left(\frac{1}{3}\right) = -18ee^{-1} + 27e\left(\frac{1}{3}\right)e^{-1}$$

$$= -18 + 9$$

$$= -9 < 0.$$

Thus, the critical point at $x = \frac{1}{3}$ is a local maximum.