3. (10 points) Suppose $f^{\prime}(x)$ is a differentiable increasing function for all x. In each of the following pairs, circle the larger value. In each case, give a brief reason for your choice.(Assume that none of the values below are equal for this function and $\Delta x \neq 0$).
(a) $\quad f^{\prime}(5) \quad$ and $\quad f^{\prime}(6)$
f^{\prime} is increasing, and $5<6$.
(b)

$$
f^{\prime \prime}(5)
$$

and 0
f^{\prime} is increasing, so its derivative $f^{\prime \prime}$ is always positive (since $f^{\prime \prime}(5) \neq 0$).
(c)

$$
f(5+\Delta x) \quad \text { and } \quad f(5)+f^{\prime}(5) \Delta x
$$

Since $f^{\prime \prime}(5)>0, f$ is concave up at 5 . Therefore its values near 5 are greater than the linear approximation, which is $f(5)+f^{\prime}(5) \Delta x$.
4. (15 points) Using calculus, find constants a and b in the function $f(x)=a x e^{b x}$ such that $f\left(\frac{1}{3}\right)=1$ and the function has a local maximum at $x=\frac{1}{3}$. Once you have found a and b, verify that your answer satisfies the given conditions. Show all work.

Since $f\left(\frac{1}{3}\right)=1$, we have an equation $1=a\left(\frac{1}{3}\right) e^{b / 3}$, so solving for a gives

$$
a=3 e^{-b / 3} .
$$

Now for f to have a local maximum at $\frac{1}{3}$, we want $f^{\prime}\left(\frac{1}{3}\right)=0$ and $f^{\prime \prime}\left(\frac{1}{3}\right)<0$. Let's solve the first equation, using our expression for a.

$$
\begin{aligned}
f^{\prime}(x) & =a e^{b x}+a b x e^{b x} \\
& =3 e^{-b / 3} e^{b x}+3 b x e^{-b / 3} e^{b x} \\
f^{\prime}\left(\frac{1}{3}\right) & =3 e^{-b / 3} e^{b / 3}+b e^{-b / 3} e^{b / 3} \\
& =3+b
\end{aligned}
$$

and setting this equal to zero tells us $b=-3$. Plugging this into the expression for a, we get $a=3 e$.
Here, verify that $f\left(\frac{1}{3}\right)=1$ and $f^{\prime}\left(\frac{1}{3}\right)=0$. However, most important, check the critical point to see that it is a local maximum. We use the second derivative test, and check $f^{\prime \prime}\left(\frac{1}{3}\right)<0$:

$$
\begin{aligned}
f^{\prime \prime}(x) & =-9 e e^{-3 x}-9 e e^{-3 x}+27 e x e^{-3 x} \\
& =-18 e e^{-3 x}+27 e x e^{-3 x} ; \\
f^{\prime \prime}\left(\frac{1}{3}\right) & =-18 e e^{-1}+27 e\left(\frac{1}{3}\right) e^{-1} \\
& =-18+9 \\
& =-9<0 .
\end{aligned}
$$

Thus, the critical point at $x=\frac{1}{3}$ is a local maximum.

