5. (16 points) A directional microphone is mounted on a stand facing a wall. The sensitivity S of the microphone to sounds at point X on the wall is inversely proportional to the square of the distance d from the point X to the mic, and directly proportional to the cosine of the angle θ. That is, $S=K \frac{\cos \theta}{d^{2}}$ for some constant K. (See the diagram below.) How far from the wall should the mic be placed to maximize sensitivity to sounds at X ?

We are given that $S=K \frac{\cos \theta}{d^{2}}$. Also, from the definition of cosine we see $\cos \theta=\frac{w}{d}$. By the Pythagorean theorem, $d^{2}=w^{2}+15^{2}=w^{2}+225$. Therefore

$$
S=K \frac{\cos \theta}{d^{2}}=K \frac{\frac{w}{d}}{w^{2}+225}=K \frac{w}{\left(w^{2}+225\right)^{3 / 2}} .
$$

Differentiating, we get

$$
\frac{d S}{d w}=K \frac{\left(w^{2}+225\right)^{3 / 2}-3 w^{2}\left(w^{2}+225\right)^{1 / 2}}{\left(w^{2}+225\right)^{3}} .
$$

The derivative is defined for all w and is only equal to zero when the numerator is zero. Factoring the common factor of $\left(w^{2}+225\right)^{1 / 2}$ gives

$$
\left(w^{2}+225\right)^{1 / 2}\left(w^{2}+225-3 w^{2}\right),
$$

and since $\left(w^{2}+225\right)$ is never zero, we must have

$$
2 w^{2}=225,
$$

or

$$
w= \pm \sqrt{\frac{225}{2}}= \pm \frac{15}{\sqrt{2}} .
$$

Since w is a length, we discard the negative root, and now must test the one critical point $w=\frac{15}{\sqrt{2}}$. Note that for $w<\frac{15}{\sqrt{2}}$, the first derivative is positive, and for $w>\frac{15}{\sqrt{2}}$ the derivative is negative. Thus, by the first derivative test, $w=\frac{15}{\sqrt{2}}$ is a local maximum. Since the function is continuous and this is the only critical point on the domain, $w=\frac{15}{\sqrt{2}}$ is the global maximum. The mic should be placed $\frac{15}{\sqrt{2}} \approx 10.6$ feet from the wall to maximize the sensitivity to sounds at X.

