6. (12 points) The graph of a function f is shown below, together with a table of values for its derivative f'. Let g(x) = f(f(x)).

x	f'(x)
-3	-1
-2	-1
-1	2
0	2
1	0
2	-2

(a) (2 points) Find g(-2)

g(-2) = f(f(-2)) = f(-1) = -1.

- (b) (3 points) Find g'(-2)By the chain rule, $g'(-2) = f'(f(-2)) \cdot f'(-2) = f'(-1) \cdot (-1) = (2)(-1) = -2$.
- (c) (3 points) Write an expression for g''(x) in terms of f and its derivatives. Again by the chain rule, $g'(x) = f'(f(x)) \cdot f'(x)$, so

$$g''(x) = f'(f(x)) \cdot f''(x) + f''(f(x)) \cdot f'(x) \cdot f'(x).$$

(d) (4 points) Suppose f''(-1) = 2. What is g''(-1)?

Using the answer above,

$$g''(-1) = f'(f(-1)) \cdot f''(-1) + f''(f(-1)) \cdot f'(-1) \cdot f'(-1)$$

= (2) \cdot (2) + (2) \cdot (2)^2
= 4 + 8 = 12.