7. (a) (4 points) Show that the point $(x, y)=(3,-6)$ lies on the curve defined by $y^{2}-x^{3}-x^{2}=0$.

Check: $(-6)^{2}-3^{3}-3^{2}=36-27-9=0$.
(b) (4 points) What is the equation of the tangent line to the curve at the point $(3,-6)$?

Use implicit differentiation to get a formula for $\frac{d y}{d x}$:

$$
2 y \frac{d y}{d x}-3 x^{2}-2 x=0
$$

so

$$
\frac{d y}{d x}=\frac{3 x^{2}+2 x}{2 y} .
$$

Evaluating at $(x, y)=(3,-6)$, we get $\frac{d y}{d x}=\frac{27+6}{-12}=-\frac{33}{12}$. This is the slope of the tangent line, so its equation is

$$
y=-\frac{33}{12}(x-3)-6 .
$$

(c) (2 points) Consider the function $f(x)=x \sqrt{x+1}$. What is the domain of f ?

The function f is defined whenever $\sqrt{x+1}$ is defined, that is, when $x+1 \geq 0$, or $x \geq-1$. [Note that f is one of the explicitly defined functions for the curve above by solving for y and restricting y to the positive root.]
(d) (6 points) Find all critical points, local maxima, and local minima of f. Which of the local maxima and minima are global maxima / minima?

First, take the derivative:

$$
\begin{aligned}
f^{\prime}(x) & =\sqrt{x+1}+\frac{1}{2} \frac{x}{\sqrt{x+1}} \\
& =\frac{2(x+1)+x}{2 \sqrt{x+1}} \\
& =\frac{3 x+2}{2 \sqrt{x+1}} .
\end{aligned}
$$

The derivative is 0 when $3 x+2=0$, i.e., when $x=-\frac{2}{3}$. The derivative is undefined for $x=-1$, which is in the domain of f.
Thus the critical points are $x=-\frac{2}{3}$ and $x=-1$. To check if these are local maxima or minima, we can apply the first derivative test. Near $-\frac{2}{3}$, we have $3 x+2<0$ if $x<-\frac{2}{3}$ and $3 x+2>0$ if $x>-\frac{2}{3}$. Since $f^{\prime}(x)$ has the same sign as $3 x+2$, we conclude that f has a local minimum at $x=-\frac{2}{3}$. As for the endpoint -1 , for $x>-1$ but near -1 , we have $3 x+2<0$, so $f^{\prime}(x)<0$. Therefore f has a local maximum at $x=-1$. Note that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$, so the local minimum at $x=-\frac{2}{3}$ is a global minimum. There is no global maximum.

