8. Let $f(x)=x^{3}-a$, for $a>1$ a constant. The graph of f is shown below.
(a) (2 points) Find and label the numbers $-a$ and $\sqrt[3]{a}$ on the axes below.

(b) (4 points) Find the equation for $L(x)$, the linear approximation to f near $x=2$. Your equation will contain the constant a. Sketch the graph of $L(x)$ on the axes above.

In general, the equation for L is $L(x)=f^{\prime}(2)(x-2)+f(2)$. Since $f(2)=2^{3}-a=8-a$, and $f^{\prime}(2)=3(2)^{2}=12$, we get

$$
L(x)=12(x-2)+8-a=12 x-16-a .
$$

(c) (4 points) Use the function L to approximate 2.01^{3}.

Since $f(x)=x^{3}-a$, we see $x^{3}=f(x)+a$. Using L to approximate f, we get $x^{3} \approx L(x)+a=$ $12 x-16$ for x near 2 . So

$$
2.01^{3} \approx 12(2.01)-16=8.12
$$

