2. (12 points) Suppose a is a positive (non-zero) constant, and consider the function

$$
f(x)=\frac{1}{3} x^{3}-4 a^{2} x .
$$

Determine all maxima and minima of f in the interval $[-3 a, 5 a]$. For each, specify whether it is global or local.

We need to check values of f at the endpoints ($x=-3 a$ and $x=5 a$) and wherever $f^{\prime}(x)=0$ or is undefined. Since $f^{\prime}(x)=x^{2}-4 a^{2}, f^{\prime}(x)$ is defined for all x and $f^{\prime}(x)=0$ at $x= \pm 2 a$. So, we have critical points $x=-2 a, 2 a$. We check all points individually to determine which are minima and which are maxima. We can use the second derivative, $f^{\prime \prime}(x)=2 x$ to help with the check.

- $x=-3 a$:
$f^{\prime}(-3 a)=(-3 a)^{2}-4 a^{2}=5 a^{2}>0$, so the function is increasing there, and this endpoint must be a (local) minimum. Since $f(-3 a)=3 a^{3}$, we have the point $\left(-3 a, 3 a^{3}\right)$.
- $\underline{x=5 a}$:
$f^{\prime}(5 a)=(5 a)^{2}-4 a^{2}=21 a^{2}>0$, so this endpoint must be a (local) maximum. Since $f(5 a)=\frac{65}{3} a^{3}$, we have the point $\left(5 a, \frac{65}{3} a^{3}\right)$.
- $x=-2 a$:
$f^{\prime \prime}(-2 a)=-4 a<0$, so this must be a (local) maximum. Since $f(-2 a)=\frac{16}{3} a^{3}$, we see that this occurs at the point $\left(-2 a, \frac{16}{3} a^{3}\right)$.
- $\underline{x=2 a}$:
$f^{\prime \prime}(2 a)=4 a>0$, so this must be a (local) minimum. Since $f(2 a)=$ $-\frac{16}{3} a^{3}$, we see that this minimum occurs at the point $\left(2 a,-\frac{16}{3} a^{3}\right)$.
Comparing the y-values of the minima at $x=-3 a, 2 a$, we find that the global minimum occurs at $x=2 a$. Similarly, comparing the y-values of the maxima at $x=-2 a, 5 a$, we find the global maximum at the endpoint $x=5 a$.
Summing up:
- There's a local minimum at $\left(-3 a, 3 a^{3}\right)$.
- There's a local maximum at $\left(-2 a, \frac{16}{3} a^{3}\right)$.
- There's a local and global minimum at $\left(2 a,-\frac{16}{3} a^{3}\right)$.
- There's a local and global maximum at $\left(5 a, \frac{65}{3} a^{3}\right)$.

