5. Your friend starts a small company which sells awesome t-shirts for $\$ 10$ apiece. The table below shows the cost of making different numbers of shirts:

q (number of shirts made)	5	10	15	20	25	30	35	40	45	50
$C(q)$ (cost, in \$)	100	130	150	168	184	196	206	218	236	256

(a) (2 points) Write an expression for the revenue function $R(q)$.

$$
R(q)=10 q, \text { measured in dollars. }
$$

(b) (4 points) How many shirts should your friend aim to sell, if her goal is to maximize profit? Explain.

The profit function $\pi(q)=R(q)-C(q)$. The critical points of this function are those q which make $\pi^{\prime}(q)=0$, as well as the endpoints. We check these.

From above, we know that $\pi^{\prime}(q)=R^{\prime}(q)-C^{\prime}(q)=10-C^{\prime}(q)$. In the table above, the largest difference between consecutive values of $C(q)$ is 30 (which is $C(10)-C(5)$), which means the largest value $C^{\prime}(q)$ takes on the interval is 6 . Therefore, as far as we can glean from the information given in the table, we should expect that $\pi^{\prime}(q)$ is positive everywhere in the interval $0 \leq q \leq 50$. So, the maximum should be at one of the endpoints.

When $q=5$ (i.e. 5 shirts are sold), your friend loses money, since $\pi(5)=$ -50 . At the other extreme, if your friend sells 50 awesome t-shirts, she will make a tidy profit of $\pi(50)=244$ dollars. Thus, she should aim to sell 50 shirts (and probably more, if that's a possibility).
6. (6 points) The radius of a spherical balloon is increasing by 3 cm per second. At what rate is air being blown into the balloon at the moment when the radius is 9 cm ? Make sure you include units! [Hint: the volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.]

If $V(t)$ denotes the volume of the balloon at some time t, the rate at which air is being blown into it is $\frac{d V}{d t}$. By chain rule, since the volume of the balloon is $V=\frac{4}{3} \pi r^{3}$, we have

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d V}{d r} \cdot \frac{d r}{d t} \\
& =\left(4 \pi r^{2}\right) \cdot \frac{d r}{d t}
\end{aligned}
$$

We are given in the problem statement that $\frac{d r}{d t}=3$, whence

$$
\frac{d V}{d t}=12 \pi r^{2}
$$

Thus when $r=9$,

$$
\frac{d V}{d t}=972 \pi \approx 3053.6 \mathrm{~cm}^{3} / \mathrm{s}
$$

