7. You decide to take a weekend off and drive down to Chicago. The graph below represents your distance S from Ann Arbor, measured in miles, t hours after you set out.

Let $A(t)$ be the slope of the line connecting the origin $(0,0)$ to the point $(t, S(t))$.
(a) (3 points) What does $A(t)$ represent in everyday language?
$A(t)=\frac{S(t)}{t}$ represents your average velocity, in miles per hour, during the first t hours of the trip.
(b) (3 points) Estimate the time t at which $A(t)$ is maximized. Write a one sentence explanation and use the graph above to justify your estimate.
$A(t)$ is maximized when the line connecting the origin to the curve is steepest. By inspecting the graph, it is clear that this happens at around $t=3$ hours, at which point the line is tangent to the curve. (This line is indicated in the figure by the dashed line.)
(c) (4 points) Use calculus to explain why $A(t)$ has a critical point when the line connecting the origin to the point $(t, S(t))$ is tangent to the curve $S(t)$.

By applying the quotient rule, we find that

$$
A^{\prime}(t)=\frac{t \cdot S^{\prime}(t)-S(t)}{t^{2}}
$$

At any non-zero value of t for which the line through the origin to $(t, S(t))$ is tangent to the curve, we must have $S^{\prime}(t)$ (the slope of the tangent line) equal to $S(t) / t$ (the slope of the line from the origin to $(t, S(t))$); thus, for any such $t, S(t)=t \cdot S^{\prime}(t)$. Thus, for any such t, $A^{\prime}(t)=0$, i.e. $A(t)$ has a critical point there.

