8. The figure below shows the graph of the second derivative of f, on the interval $[0,3]$.

Assume that $f^{\prime}(1)=1$ and $f(1)=0$.
(a) (5 points) Can $f^{\prime}(x)=0.5$ for some x in $[0,3]$? Why or why not?
$f^{\prime}(x)$ is decreasing on the interval $[0,1]$ (since $f^{\prime \prime}(x) \leq 0$), and increasing on the interval $[1,3]$ (since $f^{\prime \prime}(x) \geq 0$). Thus, on the whole interval $[0,3]$, $f^{\prime}(x)$ has a minimum at $x=1$. Since $f^{\prime}(1)=1$, we deduce that $f^{\prime}(x) \geq 1$ for all x in the interval $[0,3]$. In particular, $f^{\prime}(x)$ cannot equal 0.5 in the interval.
(b) (5 points) Explain why f has a global maximum at $x=3$.

From above, $f^{\prime}(x) \geq 1$ for all x in the interval $[0,3]$. In particular, $f^{\prime}(x)$ is always positive, so f is everywhere increasing on this interval. This means f attains its global maximum at the rightmost endpoint of the interval, namely, at $x=3$.

