9. (a) (4 points) Suppose that the tangent line to the function $y=f(x)$ at $x=c$ passes through the origin. Express $\left.\frac{d y}{d x}\right|_{x=c}$ in terms of c and $f(c)$.

We are given that the line passes through the origin and the point $(c, f(c))$, so its slope is $\frac{f(c)}{c}$. On the other hand, by definition its slope is $\left.\frac{d y}{d x}\right|_{x=c}$. Therefore,

$$
\left.\frac{d y}{d x}\right|_{x=c}=\frac{f(c)}{c} .
$$

(b) (6 points) Consider the graph of $x y=a e^{b y}$, where both a and b are positive (non-zero) constants. Determine $\frac{d y}{d x}$.

Differentiating both sides of the equation implicitly, we find

$$
y+x y^{\prime}=a e^{b y} \cdot b y^{\prime}
$$

Solving for y^{\prime} we find

$$
\frac{d y}{d x}=\frac{y}{a b e^{b y}-x} .
$$

(c) (6 points) Write down the equations of all lines passing through the origin which are tangent to the curve $x y=a e^{b y}$, where as before a and b are positive (nonzero) constants. [Hint: You may find it helpful to rewrite your answer to $9 b$ without exponentials, by using substitution - by the definition of the curve, you can replace the quantity ae ${ }^{\text {by }}$ by $x y$.]

Following the hint, we rewrite the answer to (b) in the form

$$
\frac{d y}{d x}=\frac{y}{b x y-x} .
$$

Suppose that a line through the origin is tangent to the curve at the point $\left(x_{0}, y_{0}\right)$. Note that neither x_{0} nor y_{0} can be 0 ; otherwise, from the equation of the curve we would have $0=a e^{b y_{0}}$, which would contradict the positivity of a.

By the same reasoning as in part (a),

$$
\left.\frac{d y}{d x}\right|_{\left(x_{0}, y_{0}\right)}=\frac{y_{0}}{x_{0}} .
$$

On the other hand, from above,

$$
\left.\frac{d y}{d x}\right|_{\left(x_{0}, y_{0}\right)}=\frac{y_{0}}{b x_{0} y_{0}-x_{0}} .
$$

Therefore, $\frac{y_{0}}{x_{0}}=\frac{y_{0}}{b x_{0} y_{0}-x_{0}}$. Dividing both sides of the equation by $\frac{y_{0}}{x_{0}}$ (this is OK since y_{0} is not zero), we obtain

$$
1=\frac{1}{b y_{0}-1} .
$$

This immediately implies that $y_{0}=\frac{2}{b}$, from which (using the equation defining the curve) we deduce that $x_{0}=\frac{a b}{2} e^{2}$.

Thus, the slope of the line in question is $\frac{y_{0}}{x_{0}}=\frac{4}{a b^{2} e^{2}}$. So the equation of the line is

$$
y=\frac{4}{a b^{2} e^{2}} x .
$$

