5. [13 points] The equation below implicitly defines a hyperbola.

$$
x^{2}-y^{2}=2 x+x y+y+2 .
$$

a. [5 points] Find $\frac{d y}{d x}$.
b. [4 points] Consider the two points $(4,2)$ and $(2,-1)$. Show that one of these points lies on the hyperbola defined above, and one does not.
c. [4 points] For the point in part (b) which lies on the hyperbola, find the equation of the line which is tangent to the hyperbola at this point.

