2. [12 points]

Use the graph of the function f and the table of values for the function g to answer the questions below.

x	1	2	3	4	5	6
$\mathrm{~g}(\mathrm{x})$	0	4	0	-18	-56	-120
$\mathrm{~g}^{\prime}(\mathrm{x})$	6	1	-10	-27	-50	-79
$\mathrm{~g}^{\prime \prime}(\mathrm{x})$	-2	-8	-14	-20	-26	-32

a. [6 points] Let $h(x)=\frac{g(x)}{f(2 x+3)}$. Find $h^{\prime}(1)$ or explain why it does not exist.

Solution: Using the quotient rule and the chain rule, we get

$$
\begin{aligned}
h^{\prime}(x) & =\frac{g^{\prime}(x) f(2 x+3)-g(x) f^{\prime}(2 x+3) \cdot 2}{(f(2 x+3))^{2}} \\
h^{\prime}(1) & =\frac{g^{\prime}(1) f(5)-g(1) f^{\prime}(5) \cdot 2}{(f(5))^{2}} \\
& =\frac{6 \cdot 2.5-0 \cdot 0.75 \cdot 2}{(2.5)^{2}} \\
& =\frac{6}{2.5}=\frac{12}{5}=2.4
\end{aligned}
$$

b. [6 points] Let $k(x)=g(g(x))$. Determine whether k is increasing or decreasing at $x=2$.

Solution: Using the chain rule, we get

$$
\begin{aligned}
k^{\prime}(x) & =g^{\prime}(g(x)) \cdot g^{\prime}(x) \\
k^{\prime}(2) & =g^{\prime}(g(2)) \cdot g^{\prime}(2) \\
& =g^{\prime}(4) \cdot g^{\prime}(2) \\
& =(-27) \cdot 1=-27
\end{aligned}
$$

Since $k^{\prime}(2)<0$, we know that $k(x)$ is decreasing at $x=2$.

