3. [10 points]

Find the x - and y-coordinates of all local minima, local maxima, and inflection points of the function $f(x)$ defined below. Your answers may involve the positive constant B. You must clearly mark your answers and provide justification to receive credit.

$$
f(x)=e^{-18 x^{2}+B}
$$

Solution: We will need both $f^{\prime}(x)$ (chain rule) and $f^{\prime \prime}(x)$ (product rule and chain rule).

$$
\begin{aligned}
f^{\prime}(x) & =e^{-18 x^{2}+B}(-36 x)=-36 x e^{-18 x^{2}+B} \\
f^{\prime \prime}(x) & =-36 e^{-18 x^{2}+B}+(-36 x) e^{-18 x^{2}+B}(-36 x) \\
& =-36 e^{-18 x^{2}+B}\left(1-36 x^{2}\right)
\end{aligned}
$$

First we will find the critical points. We know f^{\prime} is never undefined, and $f^{\prime}(x)=0$ only when $x=0$, since $e^{-18 x^{2}+B}$ is always positive. The y-value for $x=0$ is $e^{-18 \cdot 0^{2}+B}=e^{B}$ Thus, $\left(0, e^{B}\right)$ is the only critical point. Since $f^{\prime \prime}(0)=-36 e^{B}(1)=-36 e^{B}$ is negative, we know this point is a local maximum.

LOCAL MAXIMUM AT $\left(0, e^{B}\right)$.
Next we will find potential inflection points. We know $f^{\prime \prime}$ is never undefined, and $f^{\prime \prime}(x)=0$ when $1-36 x^{2}=0$, since $e^{-18 x^{2}+B}$ is always positive. Solving, we find that $f^{\prime \prime}(x)=0$ when $x= \pm \frac{1}{6}$. Both of these points have a y-value of $e^{-18\left(\frac{1}{6}\right)^{2}+B}=e^{-\frac{1}{2}+B}$. We need to test $f^{\prime \prime}$ near these x-values to check whether we actually have inflection points.
When $x<-\frac{1}{6}, f^{\prime \prime}(x)>0$.
When $-\frac{1}{6}<x<\frac{1}{6}, f^{\prime \prime}(x)<0$.
When $x>\frac{1}{6}, f^{\prime \prime}(x)>0$.
Since $f^{\prime \prime}$ changes sign at both of these points, f changes concavity at both points, so both are inflection points.

INFLECTION POINTS AT $\left(-\frac{1}{6}, e^{-\frac{1}{2}+B}\right)$ and $\left(\frac{1}{6}, e^{-\frac{1}{2}+B}\right)$.

