5. [13 points] The equation below implicitly defines a hyperbola.

$$
x^{2}-y^{2}=2 x+x y+y+2
$$

a. [5 points] Find $\frac{d y}{d x}$.

Solution: We use implicit differentiation:

$$
2 x-2 y \frac{d y}{d x}=2+\left(1 \cdot y+x \cdot \frac{d y}{d x}\right)+\frac{d y}{d x}+0
$$

Then solve for $\frac{d y}{d x}$:

$$
\begin{aligned}
2 x-2-y & =\frac{d y}{d x}(x+2 y+1) \\
\frac{d y}{d x} & =\frac{2 x-2-y}{x+2 y+1}
\end{aligned}
$$

b. [4 points] Consider the two points $(4,2)$ and $(2,-1)$. Show that one of these points lies on the hyperbola defined above, and one does not.

Solution: For the point $(4,2), x^{2}-y^{2}=4^{2}-2^{2}=12$ and $2 x+x y+y+2=$ $2(4)+4(2)+2+2=20$ are not equal, so $(4,2)$ IS NOT on the hyperbola.

For the point $(2,-1), x^{2}-y^{2}=2^{2}-(-1)^{2}=3$ and $2 x+x y+y+2=2(2)+2(-1)-1+2=3$ are equal, so $(2,-1)$ IS on the hyperbola.
c. [4 points] For the point in part (b) which lies on the hyperbola, find the equation of the line which is tangent to the hyperbola at this point.

Solution: From part (a),

$$
\frac{d y}{d x}=\frac{2 x-2-y}{x+2 y+1}
$$

SO

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(2,-1)}=\frac{2(2)-2-(-1)}{2+2(-1)+1}=\frac{3}{1}=3
$$

Then the equation of the tangent line is $y=3(x-2)-1$ or $y=3 x-7$.

