
6. [12 points] The *derivative* of a function f is graphed below. Five points are marked on the graph of f', at x = A, x = B, x = C, x = D, and x = E.

For each of the following, circle ALL answers which are correct. Each part has at least one correct answer. Pay careful attention to whether each question is asking about f, f', or f''. **a.** [2 points] The function f' has a local minimum when _____.

$$x = A$$
 $x = B$ $x = C$ $x = D$ $x = E$

b. [2 points] The function f is increasing when _____.

x = Ax = Bx = Cx = Dx = E

c. [2 points] The function f has a critical point when _____.

$$x = A$$
 $x = B$ $x = C$ $x = D$ $x = E$

d. [2 points] The global maximum of f on the interval $A \le x \le E$ occurs when ______

$$x = A$$
 $x = B$ $x = C$ $x = D$ $x = E$

e. [2 points] The function f has an inflection point when _____.

x = A x = B x = C x = D x = E

f. [2 points] The function f'' is undefined when _____.

$$x = A$$
 $x = B$ $x = C$ $x = D$ $x = E$