7. [16 points] Janet is an artist who produces and sells prints of her artwork. If Janet sells her prints for $\$ 17$ each, then she will sell 340 prints. Janet is considering whether she should change the price. She takes a survey and concludes that for each price increase of 75 cents, she will sell 10 fewer prints.
a. [4 points] Find a formula for Janet's revenue, $R(x)$, in terms of x, the number of 75 cent price increases.

Solution: Since revenue is price times quantity, we have

$$
R(x)=(17+0.75 x)(340-10 x) .
$$

b. [4 points] Janet plans to produce exactly the number of prints that her survey predicts she will sell. Her costs include $\$ 2$ per print, along with $\$ 500$ in fixed costs. Find a formula for $C(x)$, Janet's total costs, in terms of x, the number of 75 cent price increases.

Solution: Fixed costs $=\$ 500$, cost per print $=\$ 2$ per print, and number of prints $=$ $340-10 x$, so

$$
C(x)=500+2(340-10 x)
$$

c. [8 points] Use the methods of calculus to determine what price Janet should set for her prints if she wants to maximize her profit.

$$
\begin{aligned}
& \text { Solution: Let } \pi(x)=\text { profit }=R(x)-C(x) \text { : } \\
& \qquad \pi(x)=(340-10 x)(17+0.75 x)-[500+2(340-10 x)]
\end{aligned}
$$

So,

$$
\begin{aligned}
\pi^{\prime}(x) & =(-10)(17+0.75 x)+(340-10 x)(0.75)-2(-10) \\
& =-170-7.5 x+255-7.5 x+20 \\
& =-15 x+105 .
\end{aligned}
$$

Note that $\pi^{\prime}(x)$ is defined for all x, and $\pi^{\prime}(x)=0$ if $15 x=105$ or $x=7$. Thus, we have one critical point at $x=7$.

We must test the critical point. Using the second derivative test, we have $\pi^{\prime \prime}(x)=-15$ which is negative for all x, so $x=7$ gives a local maximum. Since $\pi(x)$ is continuous, and we have only one critical point, $x=7$ is a global max. Thus, $x=7$ maximizes the profit.

The price that Janet should charge is $17+0.75(7)=17+5.25=\$ 22.25$.

