8. [13 points] Below, there is a graph of the function $h(x)=\frac{2 x^{2}+10 x}{(x+5)\left(x^{2}+4\right)}$.

a. [3 points] The point A is a hole in the graph of h. Find the x - and y-coordinates of A.

Solution: Simplifying $h(x)$, we have $h(x)=\frac{2 x(x+5)}{(x+5)\left(x^{2}+4\right)}$. Since the factor $(x+5)$ cancels, the hole occurs when $x=-5$. We look at the limit as x approaches -5 on the cancelled form to get the y-coordinate:

$$
\lim _{x \rightarrow-5} h(x)=\lim _{x \rightarrow-5} \frac{2 x}{x^{2}+4}=\frac{-10}{29}
$$

Thus, $A=\left(-5, \frac{-10}{29}\right)$.
b. [5 points] The point B is a local minimum of h. Find the x - and y-coordinates of B.

Solution: Using the quotient rule on the simplified form of h, we have $h^{\prime}(x)=\frac{4-x^{2}}{\left(x^{2}+4\right)^{2}}$. This is never undefined, and it is equal to zero when $4-x^{2}=0$ or $x= \pm 2$. From the graph, we can see that the local minimum occurs at $x=-2$. The y-coordinate here is $y=\frac{-4}{8}=-\frac{1}{2}$, so $B=\left(-2,-\frac{1}{2}\right)$.
c. [5 points] The point C is an inflection point of h. Find the x - and y-coordinates of C.

Solution: We use the quotient rule again to find $h^{\prime \prime}(x)=\frac{2 x^{3}-24 x}{\left(x^{2}+4\right)^{3}}=\frac{2 x\left(x^{2}-12\right)}{\left(x^{2}+4\right)^{3}}$. This is never undefined, and it is zero when $2 x\left(x^{2}-12\right)=0$, i.e. when $x=0, \pm 2 \sqrt{3}$. From the graph, we see that our x-coordinate must be $+2 \sqrt{3}$, and then $y=\frac{4 \sqrt{3}}{16}=\frac{\sqrt{3}}{4}$, so $C=\left(2 \sqrt{3}, \frac{\sqrt{3}}{4}\right)$.

