1. [15 points] A hoophouse is an unheated greenhouse used to grow certain types of vegetables during the harsh Michigan winter. A typical hoophouse has a semi-cylindrical roof with a semi-circular wall on each end (see figure to the right). The growing area of the hoophouse is the rectangle of length ℓ and width w (each
 measured in feet) which is covered by the hoophouse. The cost of the semi-circular walls is $\$ 0.50$ per square foot and the cost of the roof, which varies with the side length ℓ, is $\$ 1+0.001 \ell$ per square foot.
a. [4 points] Write an equation for the cost of a hoophouse in terms of ℓ and w. (Hint: The surface area of a cylinder of height ℓ and radius r, not including the circles on each end, is $A=2 \pi r \ell$.)

Solution: The roof has area $\pi r \ell=\frac{\pi}{2} w \ell$. The walls have area $\pi r^{2}=\frac{\pi}{4} w^{2}$. This means the cost is

$$
C=0.50 \cdot \frac{\pi}{4} w^{2}+(1+0.001 \ell) \frac{\pi}{2} w \ell=\frac{\pi}{8} w^{2}+\frac{\pi}{2}(1+0.001 \ell) w \ell .
$$

b. [11 points] Find the dimensions of the least expensive hoophouse with 8000 square feet of growing area.
Solution: The Area of the hoophouse is $8000=w \ell$. Using this expression, we can eliminate ℓ in our cost equation.

$$
\begin{aligned}
C=\frac{\pi}{8} w^{2}+\frac{\pi}{2}(1+0.001 \ell) w \ell & =\frac{\pi}{8} w^{2}+\frac{\pi}{2}(1+0.001(8000 / w)) 8000 . \\
& =4000 \pi+\frac{\pi}{8} w^{2}+32000 \pi w^{-1} .
\end{aligned}
$$

Now we compute $C^{\prime}=\frac{\pi}{4} w-32000 \pi w^{-2}$. Solving for w gives us a critical point at $w=$ 50.397 ft . To see what type of critical point we have, we compute $C^{\prime \prime}=\frac{\pi}{4}+64000 \pi w^{-3}$. For $w>0 C^{\prime \prime}>0$ which means our critical point is a local minimum by the second derivative test. Since it is the only critical point of the function, it must be a global minimum as well. When $w=50.397, \ell=158.74$, so the least expensive hoophouse with 8000 square feet of growing area is $50.397 \times 158.74 \mathrm{ft}$.

