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1. [15 points] A hoophouse is an unheated greenhouse used to grow
certain types of vegetables during the harsh Michigan winter. A
typical hoophouse has a semi-cylindrical roof with a semi-circular
wall on each end (see figure to the right). The growing area of
the hoophouse is the rectangle of length ℓ and width w (each
measured in feet) which is covered by the hoophouse. The cost
of the semi-circular walls is $0.50 per square foot and the cost of
the roof, which varies with the side length ℓ, is $1 + 0.001ℓ per
square foot.

a. [4 points] Write an equation for the cost of a hoophouse in terms of ℓ and w. (Hint: The
surface area of a cylinder of height ℓ and radius r, not including the circles on each end,
is A = 2πrℓ.)

Solution: The roof has area πrℓ = π
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b. [11 points] Find the dimensions of the least expensive hoophouse with 8000 square feet
of growing area.

Solution: The Area of the hoophouse is 8000 = wℓ. Using this expression, we can
eliminate ℓ in our cost equation.
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Now we compute C ′ = π

4
w − 32000πw−2. Solving for w gives us a critical point at w =

50.397ft. To see what type of critical point we have, we compute C ′′ = π

4
+ 64000πw−3.

For w > 0 C ′′ > 0 which means our critical point is a local minimum by the second
derivative test. Since it is the only critical point of the function, it must be a global
minimum as well. When w = 50.397, ℓ = 158.74, so the least expensive hoophouse with
8000 square feet of growing area is 50.397 x 158.74 ft.
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