2. [16 points]

Graphed below is a function $t(x)$. Define $p(x)=x^{2} t(x), q(x)=t(\sin (x)), r(x)=\frac{t(x)}{3 x+1}$, and $s(x)=t(t(x))$. For this problem, do not assume $t(x)$ is quadratic.

Carefully estimate the following quantities.
a. [4 points] $p^{\prime}(-1)$

Solution: By the product rule, $p^{\prime}(x)=2 x t(x)+x^{2} t^{\prime}(x)$. Estimating using the graph, we have

$$
p^{\prime}(-1)=2(-1) t(-1)+(-1)^{2} t^{\prime}(-1)=(-2)(-1)+4=6 .
$$

b. [4 points] $q^{\prime}(0)$

Solution: By the chain rule, $q^{\prime}(x)=t^{\prime}(\sin x) \cos x$. Estimating using the graph, we have

$$
q^{\prime}(0)=t^{\prime}(\sin 0) \cos 0=t^{\prime}(0)=2 .
$$

c. [4 points] $r^{\prime}(3)$

Solution: By the quotient rule, $r^{\prime}(x)=\frac{(3 x+1) t^{\prime}(x)-3 t(x)}{(3 x+1)^{2}}$. Estimating using the graph, we have

$$
r^{\prime}(3)=\frac{(3(3)+1) t^{\prime}(3)-3 t(3)}{(3(3)+1)^{2}}=\frac{-40-3(-1)}{100}=-\frac{37}{100}
$$

d. [4 points] $s^{\prime}(0)$

Solution: By the chain rule, $s^{\prime}(x)=t^{\prime}(t(x)) t^{\prime}(x)$. Estimating using the graph, we have

$$
s^{\prime}(0)=t^{\prime}(t(0)) t^{\prime}(0)=t^{\prime}(2) \cdot 2=(-2)(2)=-4 .
$$

