4. [15 points] A model for the amount of an antihistamine in the bloodstream after a patient takes a dose of the drug gives the amount, a, as a function of time, t, to be $a(t)=A\left(e^{-t}-e^{-k t}\right)$. In this equation, A is a measure of the dose of antihistamine given to the patient, and k is a transfer rate between the gastrointestinal tract and the bloodstream. A and k are positive constants, and for pharmaceuticals like antihistamine, $k>1$.
a. [5 points] Find the location $t=T_{m}$ of the non-zero critical point of $a(t)$.

Solution: The maximum will occur at an endpoint or at a critical point, when $a^{\prime}(t)=0$. The critical points are thus where $a^{\prime}(t)=A\left(-e^{-t}+k e^{-k t}\right)=0$. Solving, we have $e^{-t}=k e^{-k t}$, so that $e^{(k-1) t}=k$, or $t=T_{m}=\frac{1}{k-1} \ln (k)$.
b. [3 points] Explain why $t=T_{m}$ is a global maximum of $a(t)$ by referring to the expression for $a(t)$ or $a^{\prime}(t)$.
Solution: Note that $a^{\prime}(0)=A(k-1)>0$ and that for large $t, a^{\prime}(t)=A\left(-e^{-t}+k e^{-k t}\right)<0$ ($k>1$ guarantees that the second exponential decays much faster than the first). Thus the critical point must be a maximum. In addition, because $t=T_{m}$ this is the only critical point we know it must be the global maximum.
Alternately, note that $a(0)=0$. Because $k>0, a(t) \geq 0$ for all t (the exponential involving $-k t$ will decay faster than $\left.e^{-t}\right)$. And for large $t, a(t) \rightarrow 0$. Thus at $t=T_{m}$, $a(t)$ must take on a maximum value, and because it is the only critical point this must be the global maximum.
c. [4 points] The function $a(t)$ has a single inflection point. Find the location $t=T_{I}$ of this inflection point. You do not need to prove that this is an inflection point.

Solution: To find inflection points, we look for where $a^{\prime \prime}(t)=0$. This gives $a^{\prime \prime}(t)=$ $A\left(e^{-t}-k^{2} e^{-k t}\right)=0$. Solving for t, we have (similarly to in (a)) $e^{(k-1) t}=k^{2}$, so that $t=T_{I}=\frac{1}{k-1} \ln \left(k^{2}\right)=\frac{2}{k-1} \ln (k)$.
(We could show that this is an inflection point by a similar argument to (b): because $k>1$ we know that $a^{\prime \prime}(0)<0$ and as t increases $a^{\prime \prime}(t)$ must eventually become positive. Thus this is an inflection point.)
d. [3 points] Using your expression for T_{m} from (a), find the rate at which T_{m} changes as k changes.

$$
\begin{aligned}
& \text { Solution: We have } T_{m}=\frac{1}{k-1} \ln (k) \text {. Thus } \\
& \qquad \frac{d T_{m}}{d k}=-\frac{1}{(k-1)^{2}} \ln (k)+\frac{1}{k(k-1)} .
\end{aligned}
$$

