5. [15 points] The graph to the right shows a function $G(b)$ that approximates the price of an ounce of gold (in dollars) as a function of the cost of a barrel of oil for data between 2009 and 2011. ${ }^{1}$
a. [3 points] Estimate $G^{\prime}(70)$.

Solution: From the graph, it appears that between $b=70$ and $b=80, G$ increases by about 70 as b increases about 10. Thus we estimate that $G^{\prime}(70) \approx 7 \$ /$ oz per $\$ /$ barrel.

b. [5 points] Recall that G^{-1} is defined to be a function such that $G^{-1}(G(b))=b$ (or such that $G\left(G^{-1}(y)\right)=y$, where y is the price of an ounce of gold). Derive, using the chain rule, a formula for $\left(G^{-1}\right)^{\prime}$ in terms of G^{\prime}.

Solution: We know that $G^{-1}(G(b))=b$. Thus $\frac{d}{d b} G^{-1}(G(b))=1$. Differentiating the lefthand side of this using the chain rule, we have $\frac{d}{d b} G^{-1}(G(b))=\left(G^{-1}\right)^{\prime}(G(b)) \cdot G^{\prime}(b)=1$. Thus $\left(G^{-1}\right)^{\prime}(G(b))=1 / G^{\prime}(b)$.
Alternately, if we start with $G\left(G^{-1}(y)\right)=y$, we have $\frac{d}{d y} G\left(G^{-1}(y)\right)=1$. Applying the chain rule to the left-hand side, we have $G^{\prime}\left(G^{-1}(y)\right) \cdot\left(G^{-1}\right)^{\prime}(y)=1$, so that $\left(G^{-1}\right)^{\prime}(y)=$ $1 / G^{\prime}\left(G^{-1}(y)\right)$. (Obviously, with $y=G(b)$, this is the same as the previous expression.)
c. [4 points] Using parts (a) and (b), estimate $\left(G^{-1}\right)^{\prime}(G(70))$.

Solution: Using part (b), we have $\left(G^{-1}\right)^{\prime}(G(70))=1 / G^{\prime}(70)=1 / 7 \$ /$ barrel per $\$ /$ oz.
d. [3 points] Explain the practical meaning of your result in (c).

Solution: $\left(G^{-1}\right)^{\prime}(G(70))=0.14$ indicates that when the price of oil is $70 \$ /$ barrel, the price of a barrel of oil goes up by about $\$ 0.14$ if the price of gold goes up by $\$ 1$.

[^0]
[^0]: ${ }^{1}$ Gold prices from http://www.goldprice.org/; oil from http://en.wikipedia.org/wiki/Price_of_petroleum

