6. [15 points] Given below is the graph of a function $h(t)$. Suppose $j(t)$ is the local linearization of $h(t)$ at $t=\frac{7}{8}$.

a. [5 points] Given that $h^{\prime}\left(\frac{7}{8}\right)=\frac{2}{3}$, find an expression for $j(t)$.

Solution: The local linearization is the tangent line to the curve. We know this line has slope $h^{\prime}\left(\frac{7}{8}\right)=\frac{2}{3}$ and it goes through the point $\left(\frac{7}{8}, \frac{1}{4}\right)$, so it has equation

$$
y-\frac{1}{4}=\frac{2}{3}\left(t-\frac{7}{8}\right)
$$

using point slope form. Solving for $y$ we have $y=\frac{2}{3} t-\frac{1}{3}$. So $j(t)=\frac{2}{3} t-\frac{1}{3}$. stuff
b. [4 points] Use your answer from (a) to approximate $h(1)$.

Solution: Since $j(t)$ approximates $h(t)$ for $t$-values near $\frac{7}{8}$, we have

$$
h(1) \approx j(1)=\frac{2}{3}(1)-\frac{1}{3}=\frac{1}{3} .
$$

c. [3 points] Is the approximation from (b) an over- or under-estimate? Explain.

Solution: The approximation in (b) is an underestimate. The function $h(t)$ is concave up at $t=7 / 8$ which means the graph lies above the local linearization for $t$-values near $7 / 8$. Since we are using the local linearization to estimate the function value, our estimate will be less than the actual function value.
d. [3 points] Using $j(t)$ to estimate values of $h(t)$, will the estimate be more accurate at $t=1$ or at $t=\frac{3}{4}$ ? Explain.

Solution: The estimate at $t=3 / 4$ will be more accurate. This can be seen by drawing the tangent line and measuring the vertical distance between the estimated value and the function value at the $t$ values $3 / 4$ and 1 . The line is much closer to the function at $t=3 / 4$ than it is at $t=1$.

