8. [16 points] Below is the graph of the function

\[f(x) = rx e^{-qx}, \]

where \(r \) and \(q \) are constants. Assume that both \(r \) and \(q \) are greater than 1. The function \(f(x) \) passes through the origin and has a local maximum at the point \(P = \left(\frac{1}{q}, \frac{r}{q} e^{-1} \right) \), as shown in the graph.

\[\left(\frac{1}{q}, \frac{r}{q} e^{-1} \right) \]

\[f(x) \]

\[x \]

a. [4 points] Justify, using either the first-derivative test or second-derivative test, that the point \(P \) is a local maximum.

b. [2 points] What are the \(x \)-coordinates of the global maximum and minimum of \(f(x) \) on the domain \([0, 1]\)? (If \(f(x) \) does not have a global maximum on this domain, say “no global maximum”, and similarly if \(f(x) \) does not have a global minimum.)

c. [2 points] What are the \(x \)-coordinates of the global maximum and minimum of \(f(x) \) on the domain \((-\infty, \infty)\)? (If \(f(x) \) does not have a global maximum on this domain, say “no global maximum”, and similarly if \(f(x) \) does not have a global minimum.)
8. (continued) For your convenience, the graph of $f(x)$ is repeated below.

![Graph of $f(x)$](image)

\[\left(\frac{1}{q}, \frac{r}{q}e^{-1} \right) \]

d. [4 points] Suppose that $g(x)$ is a function with $g'(x) = f(x)$. Find x-values of all local maxima and minima of $g(x)$. Justify that each maximum you find is a maximum and each minimum is a minimum.

e. [4 points] If $g(x)$ is as in part (d), for which x-values does $g(x)$ have inflection points? Show that these x-values are indeed inflection points.