2. [10 points] Lucy Lemon, the owner of a local lemonade stand, has observed that her lemonade sales are highly dependent on the temperature. Let $L(T)$ denote the number of cups of lemonade Lucy sells on a day whose average temperature is T° Fahrenheit. Below is a table of values for the derivative, $L^{\prime}(T)$. Assume that between each pair of consecutive T-values in the table, L^{\prime} is either strictly increasing or strictly decreasing.

T	50	55	60	65	70	75	80	85	90
$L^{\prime}(T)$	-5	-4	-2	2	5	6	3	-2	-3

a. [4 points] Approximate the values of T at which $L(T)$ has a critical point, and classify each as a local maximum, local minimum, or neither. (No explanation is necessary.)

Solution: The sign of the derivative goes from negative to positive at approximately $T=62.5$, so by the first-derivative test, there is a local minimum at approximately that point. (Any T-value between 60 and 65 is an acceptable answer.) The sign of the derivative goes from positive to negative at approximately $T=82.5$, so there is a local maximum at approximately that point. (Any T-value between 80 and 85 is an acceptable answer.)
b. [6 points] Suppose on a day when the temperature is T° Fahrenheit, Lucy sells $R(T)$ dollars worth of lemonade. Assuming cups of lemonade sell for $\$ 1.50$ each, compute $R^{\prime}(80)$, and write a sentence expressing the meaning of $R^{\prime}(80)$ which would be understood by someone who knows no calculus.

Solution: The function $R(T)$ is given by the formula $R(T)=1.5 L(T)$, so

$$
R^{\prime}(80)=1.5 L^{\prime}(80)=4.5
$$

In practical terms, this means that Lucy earns about $\$ 4.50$ more on a day whose average temperature is $81^{\circ} \mathrm{F}$ than she does on a day whose average temperature is $80^{\circ} \mathrm{F}$.

