3. [12 points] The following questions relate to the implicit function

$$
y^{2}+4 x=4 x y^{2} .
$$

a. [4 points] Compute $\frac{d y}{d x}$.

Solution: Differentiating the equation with respect to x, we have

$$
2 y \frac{d y}{d x}+4=4 y^{2}+8 x y \frac{d y}{d x} .
$$

Gathering terms involving $\frac{d y}{d x}$ to one side, the equation becomes

$$
2 y \frac{d y}{d x}-8 x y \frac{d y}{d x}=4 y^{2}-4
$$

which gives the solution

$$
\frac{d y}{d x}=\frac{4 y^{2}-4}{2 y-8 x y} .
$$

b. [4 points] Find the equation for the tangent line to this curve at the point $\left(\frac{1}{3}, 2\right)$.

Solution: The slope is

$$
\left.\frac{d y}{d x}\right|_{\left(\frac{1}{3}, 2\right)}=\frac{4 \cdot 2^{2}-4}{2 \cdot 2-8 \cdot \frac{1}{3} \cdot 2}=-9,
$$

so by the point-slope formula, the equation is

$$
y=-9 x+5 .
$$

c. [4 points] Find the x - and y-coordinates of all points at which the tangent line to this curve is vertical.
Solution: The slope is undefined as these points, so we must have $2 y-8 x y=0$. Factoring out a $2 y$ we get

$$
2 y(1-4 x)=0
$$

which gives the solutions $y=0$ or $x=\frac{1}{4}$. Plugging into the equation for the implicit function, $y=0$ gives the point $(0,0)$. However, when we plug in $x=\frac{1}{4}$, we get the equation $y^{2}+1=y^{2}$, which has no solutions. Therefore, $(0,0)$ is the only point at which the tangent line is vertical.

