4. [12 points] Consider the family of functions

$$
f(x)=a x-e^{b x}
$$

where a and b are positive constants.
a. [4 points] Any function $f(x)$ in this family has only one critical point. In terms of a and b, what are the x - and y-coordinates of that critical point?
Solution: We find

$$
f^{\prime}(x)=a-b e^{b x}
$$

so setting this equal to zero and solving for x shows that there is a critical point at

$$
x=\frac{1}{b} \ln \left(\frac{a}{b}\right)
$$

The y-coordinate of the critical point is

$$
y=f\left(\frac{1}{b} \ln \left(\frac{a}{b}\right)\right)=\frac{a}{b} \ln \left(\frac{a}{b}\right)-\frac{a}{b}
$$

b. [4 points] Is the critical point a local maximum or a local minimum? Justify your answer with either the first-derivative test or the second-derivative test.
Solution: The second derivative of $f(x)$ is $f^{\prime \prime}(x)=-b^{2} e^{b x}$, so

$$
f^{\prime \prime}\left(\frac{1}{b} \ln \frac{a}{b}\right)=-b^{2} \cdot \frac{a}{b}=-a b
$$

which is negative since a and b are both positive. Therefore, the second derivative test tells us that the critical point is a local maximum.
c. [4 points] For which values of a and b will $f(x)$ have a critical point at $(1,0)$?

Solution: We need

$$
\frac{1}{b} \ln \frac{a}{b}=1 \quad \text { and } \quad \frac{a}{b} \ln \frac{a}{b}-\frac{a}{b}=0
$$

The first equation rearranges to $\ln \left(\frac{a}{b}\right)=b$, and if we plug this into the second equation, we obtain

$$
a-\frac{a}{b}=0 \Rightarrow 1-\frac{1}{b}=0 \Rightarrow b=1
$$

Plugging this into either equation and solving for a gives

$$
a=e
$$

