5. [12 points]
a. [3 points] Find the local linearization $L(x)$ of the function

$$
f(x)=(1+x)^{k}
$$

near $x=0$, where k is a positive constant.
Solution: The derivative is $f^{\prime}(x)=k(1+x)^{k-1}$, so the slope of the tangent line at $x=0$ is

$$
f^{\prime}(0)=k
$$

Since $f(0)=1^{k}=1$, the tangent line passes through the point $(0,1)$. Therefore, the point-slope formula shows that the equation of the tangent line is

$$
y=k x+1
$$

b. [3 points] For which values of k does this local linearization give underestimates of the actual value of $f(x)$? (Show your work.)
Solution: The local linearization gives underestimates of the actual value when $f^{\prime \prime}(0)>$ 0 . The second derivative is $f^{\prime \prime}(x)=k(k-1)(1+x)^{k-2}$, so

$$
f^{\prime \prime}(0)=k(k-1)
$$

Since $k>0$, this is positive when the second factor is positive, which is when $k>1$.
c. [2 points] Suppose you want to use $L(x)$ to find an approximation of the number $\sqrt{1.1}$. What number should k be, and what number should x be?

Solution: If $k=\frac{1}{2}$ and $x=0.1$, then $f(0.1)=\sqrt{1.1}$, so $L(1.1)$ gives an approximation of $\sqrt{1.1}$.
d. [2 points] Approximate $\sqrt{1.1}$ using $L(x)$.

Solution: If k and x are as above, then $\sqrt{1.1} \approx L(0.1)=1.05$.
e. [2 points] What is the error in the approximation from part (d)?

Solution: The error is the actual value minus the approximate value which is $\sqrt{1.1}-$ $1.05 \approx-0.00119$.

