7. [12 points] For Valentine's Day, Jason decides to make a heart-shaped cookie for Sophie to try to win her over. Being mathematically-minded, the only kind of heart that Jason knows how to construct is composed of two half-circles of radius r and an isosceles triangle of height h, as shown below.

Jason happens to know that Sophie's love for him will be determined by the dimensions of the cookie she receives; if given a cookie as described above, her love L will be

$$
L=h r^{2}
$$

where r and h are measured in centimeters and L is measured in pitter-patters, a standard unit of affection. If Jason wants to make a cookie whose area is exactly $300 \mathrm{~cm}^{2}$, what should the dimensions be to maximize Sophie's love?

Solution: The area of the heart shape is

$$
A=\pi r^{2}+2 r h .
$$

Setting this equal to 300 and solving for h gives the formula

$$
h=\frac{300-\pi r^{2}}{2 r}=150 r^{-1}-\frac{\pi}{2} r .
$$

Therefore, the formula for L can be written in terms of r alone:

$$
L(r)=\left(150 r^{-1}-\frac{\pi}{2} r\right) r^{2}=150 r-\frac{\pi}{2} r^{3} .
$$

We need to find the global maximum of $L(r)$. We have

$$
L^{\prime}(r)=150-\frac{3 \pi}{2} r^{2}=0 \Rightarrow r=\frac{10}{\sqrt{\pi}} .
$$

This critical point is a local maximum of L by the second-derivative test, since

$$
L^{\prime \prime}(r)=-3 \pi r \Rightarrow L^{\prime \prime}(10 / \sqrt{\pi})=-30 \sqrt{\pi}<0 .
$$

Since it is the only critical point, it must therefore be the global maximum.
Plugging this value of r into our formula, we can find the value of h, as well. We find that the dimensions that maximize Sophie's love are:

$$
\begin{aligned}
& r=10 / \sqrt{\pi} \approx 5.6419 \mathrm{~cm} \\
& h=10 \sqrt{\pi} \approx 17.7245 \mathrm{~cm}
\end{aligned}
$$

