8. [16 points] Below is the graph of the function

$$
f(x)=r x e^{-q x}
$$

where r and q are constants. Assume that both r and q are greater than 1 . The function $f(x)$ passes through the origin and has a local maximum at the point $P=\left(\frac{1}{q}, \frac{r}{q} e^{-1}\right)$, as shown in the graph.

a. [4 points] Justify, using either the first-derivative test or second-derivative test, that the point P is a local maximum.
Solution: To apply the first-derivative test, first compute:

$$
f^{\prime}(x)=r e^{-q x}(-q x+1)
$$

Thus, there is indeed a critical point at $x=\frac{1}{q}$. Plugging in $x=0$ (which is less than $\frac{1}{q}$), we find $f^{\prime}(0)=r>0$, while plugging in $x=\frac{2}{q}$ (which is greater than $\frac{1}{q}$), we find $f^{\prime}\left(\frac{2}{q}\right)=-r e^{-2}<0$. Thus, f^{\prime} changes from positive to negative at $x=\frac{1}{q}$, so it is a local maximum.
To apply the second-derivative test, compute $f^{\prime \prime}(x)=-r q e^{-q x}(-q x+2)$, so

$$
f^{\prime \prime}\left(\frac{1}{q}\right)=-r q e^{-1}<0
$$

b. [2 points] What are the x-coordinates of the global maximum and minimum of $f(x)$ on the domain $[0,1]$? (If $f(x)$ does not have a global maximum on this domain, say "no global maximum", and similarly if $f(x)$ does not have a global minimum.)

Solution: Since $q>1$, the local maximum at $x=\frac{1}{q}$ is within this domain. Therefore, the global maximum occurs at $x=\frac{1}{q}$ and the global minimum occurs at $x=0$.
c. [2 points] What are the x-coordinates of the global maximum and minimum of $f(x)$ on the domain $(-\infty, \infty)$? (If $f(x)$ does not have a global maximum on this domain, say "no global maximum", and similarly if $f(x)$ does not have a global minimum.)

Solution: The global maximum is at $x=\frac{1}{q}$ and there is no global minimum.
8. (continued) For your convenience, the graph of $f(x)$ is repeated below.

d. [4 points] Suppose that $g(x)$ is a function with $g^{\prime}(x)=f(x)$. Find x-values of all local maxima and minima of $g(x)$. Justify that each maximum you find is a maximum and each minimum is a minimum.
Solution: The function $g(x)$ has critical points wherever $g^{\prime}(x)=f(x)=0$, which is only at $x=0$. Since $f(x)$ changes from negative to positive at this point, the critical point at $x=0$ is a local minimum by the first-derivative test.
e. [4 points] If $g(x)$ is as in part (d), for which x-values does $g(x)$ have inflection points? Show that these x-values are indeed inflection points.
Solution: The function $g(x)$ has inflection points when $g^{\prime \prime}(x)=f^{\prime}(x)$ changes sign. This occurs precisely when $f(x)$ changes from increasing to decreasing (or vice versa), which is at $x=\frac{1}{q}$.

