9. [10 points] The function $f(x)$ is twice-differentiable. Some values of f and f^{\prime} are given in the following table. In addition, it is known that $f^{\prime \prime}(x)$ is positive.

x	0	1	2	3	4
$f(x)$	7	6	7	9	12
$f^{\prime}(x)$	-2	$\frac{1}{2}$	1	2	4

No partial credit will be given on any part of this problem.
a. [4 points] Circle any statement which is true, and draw a line through any statement which is false.
(i.) For some value of x with $0<x<1, f$ has a critical point.
(ii.) For some value of x with $1<x<2, f$ has a critical point.
(iii.) For some value of x with $2<x<3, f$ has a critical point.
(iv.) For some value of x with $3<x<4, f$ has a critical point.
b. [3 points] If possible, find the global minimum value of $f(x)$ on the closed interval $[0,4]$. (Give the y-coordinate, not the x-coordinate.) Do not give an approximation. If it is not possible to find it exactly, write "IT IS NOT POSSIBLE TO FIND IT EXACTLY."
c. [3 points] If possible, find the global maximum value of $f(x)$ on the closed interval $[0,4]$. (Give the y-coordinate, not the x-coordinate.) Do not give an approximation. If it is not possible to find it exactly, write "IT IS NOT POSSIBLE TO FIND IT EXACTLY."

