3. [12 points] Consider the family of linear functions

$$
L(x)=a x-3
$$

and the family of functions

$$
M(x)=a \sqrt{x}
$$

where a is a nonzero constant number. Note that the number a is the same for both equations. Find a value of a for which $L(x)$ is tangent to the graph of $M(x)$. Also find the x and y coordinates of the point of tangency. Write your answers in the blanks provided.
Solution: Since the graphs of M and L intersect are tangent at the relevant point, we have

$$
M^{\prime}(x)=L^{\prime}(x)
$$

Computing the derivatives, we get

$$
\frac{1}{2} a x^{-\frac{1}{2}}=a
$$

Canceling the a from this equation and doing some algebra, we see $x=\frac{1}{4}$. Since the two graphs must also intersect at this point, we must have

$$
M\left(\frac{1}{4}\right)=L\left(\frac{1}{4}\right),
$$

and using this, we can solve for a; we get $a=-12$. Finally, we can recover $y=-6$ by plugging these values into either the equation for $M(x)$ or the equation for $L(x)$.

$$
\begin{aligned}
& a=\underline{-12} \\
& x=\xrightarrow{.25} \\
& y=\longrightarrow-6
\end{aligned}
$$

