4. [11 points]
a. [4 points] Find the tangent line approximation of the function

$$
p(x)=1+x^{k}
$$

near $x=1$, where k is a positive constant.
Solution:

$$
L(x)=k(x-1)+2
$$

b. [2 points] Suppose you want to use your tangent line from (a) to approximate the number $1+\sqrt{0.95}$. What values of k and x would you plug in to your answer from (a)?

Solution: We'd take $k=\frac{1}{2}$ and $x=.95$.
c. [2 points] Approximate $1+\sqrt{0.95}$ using your tangent line from (a).

Solution: We have

$$
1+\sqrt{.95} \approx .5(-.05)+2=1.975
$$

d. [3 points] Determine whether your approximation in (c) is an over- or underestimate. Be sure your reasoning is clear.
Solution: The graph of $1+x^{5}$ is just the graph of the square root function shifted up by one, so it's concave down everywhere. It follows that the linear approximation is an overestimate.

