5. [14 points] Consider the family of functions

$$
g(x)=\frac{a x^{b}}{\ln (x)}
$$

where a and b are nonzero constants.
a. [4 points] Calculate $g^{\prime}(x)$.

Solution: Using the quotient rule, we get

$$
g^{\prime}(x)=\frac{a b x^{b-1} \ln (x)-a x^{b-1}}{(\ln (x))^{2}} .
$$

b. [6 points] Find values for a and b so that $g(e)=1$ and $g^{\prime}(e)=0$.

Solution: Since $g(e)=1$ we have

$$
a e^{b}=1 .
$$

Since $g^{\prime}(e)=0$, the numerator of the answer to (a) must be zero, which says

$$
a b e^{b-1}-a e^{b-1}
$$

The equation (\dagger) simplifies to $b=1$, and then from (\star) we deduce $a=\frac{1}{e}$.
c. [4 points] With the values of a and b you found in (b), is $x=e$ a local minimum of g, a local maximum of g or neither? Justify your answer.
Solution: It is a local minimum. To see this, we use the first derivative test. The $\overline{\text { denominator of our expression for } g^{\prime}}$ is always positive, and (with our values of a and b) the numerator is

$$
\frac{1}{e}(\ln (x)-1) .
$$

This expression changes signs from negative to positive around $x=e$.

