7. [10 points] For each real number k, there is a curve in the plane given by the equation

$$
e^{y^{2}}=x^{3}+k .
$$

a. [4 points] Find $\frac{d y}{d x}$.

Solution: We have
so

$$
2 y e^{y^{2}} \frac{d y}{d x}=3 x^{2},
$$

$$
\frac{d y}{d x}=\frac{3 x^{2}}{2 y e^{y^{2}}}
$$

b. [3 points] Suppose that $k=9$. There are two points on the curve where the tangent line is horizontal. Find the x and y coordinates of each one.
Solution: Horizontal tangent lines occur when the numerator of the derivative is zero, so in this case $x=0$. To solve for the y-coordinate, we have

$$
e^{y^{2}}=9
$$

so $y= \pm \sqrt{\ln (9)}$.
c. [3 points] Now suppose that $k=\frac{1}{2}$. How many points are there where the curve has a horizontal tangent line?

Solution: Again we get $x=0$. Now if we try to solve for y we have

$$
y^{2}=\ln \left(\frac{1}{2}\right)<0
$$

and so there are no points where the curve has a horizontal tangent line.

