2. [9 points] Consider a right triangle with legs of length $x \mathrm{ft}$ and $y \mathrm{ft}$ and hypotenuse of length $z \mathrm{ft}$, as in the following picture:

a. [2 points] Suppose that the perimeter of the triangle is 8 ft . Let $A(x)$ give the area of the triangle, in ft^{2}, as a function of the side length x. In the context of this problem, what is the domain of $A(x)$? Note that you do not need to find a formula for $A(x)$.

Abstract

Answer: b. [7 points] Suppose instead that the perimeter of the triangle is allowed to vary, but the area of the triangle is fixed at $3 \mathrm{ft}^{2}$. Let $P(x)$ give the perimeter of the triangle, in ft , as a function of the side length x.

(i) In the context of this problem, what is the domain of $P(x)$?

Answer:

(ii) Find a formula for $P(x)$. The variables y and z should not appear in your answer. (This is the equation one would use to find the value(s) of x minimizing the perimeter. You should not do the optimization in this case.)

Answer: $\quad P(x)=$ \qquad

