3. [12 points] The graph of a portion of $y=f^{\prime}(x)$, the derivative of $f(x)$ is shown below. Note that there is a sharp corner at $x=B$ and that $x=H$ is a vertical asymptote.
The function $f(x)$ is continuous with domain $(-\infty, \infty)$.

For each of the questions below, circle all of the available correct answers.
(Circle NONE if none of the available choices are correct.)
a. [2 points] At which of the following six values of x is the function $f(x)$ not differentiable?
$\begin{array}{lllllll}B & C & E & F & H & I & \text { NONE }\end{array}$
b. [2 points] At which of the following six values of x does the function $f^{\prime}(x)$ appear to be not differentiable?

A	B	C	D	E	F	NONE

c. [2 points] At which of the following nine values of x does $f(x)$ have a critical point?
$\begin{array}{lllllllllll}A & B & C & D & E & F & G & H & I & \text { NONE }\end{array}$
d. [2 points] At which of the following nine values of x does $f(x)$ have a local minimum?
$\begin{array}{lllllllllll}A & B & C & D & E & F & G & H & I & \text { NONE }\end{array}$
e. [2 points] At which of the following nine values of x is $f^{\prime \prime}(x)=0$?
A
$B \quad C$
D
$G \quad H$
I
NONE
f. [2 points] At which of the following nine values of x does $f(x)$ have an inflection point?

| A | B | C | D | E | F | G | H | I | NONE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

