10. [10 points] Let $f(x)$ be a function with $f(1)=5, f^{\prime}(1)=-2$, and $f^{\prime \prime}(1)=3$.
a. [2 points] Use the local linearization of $f(x)$ at $x=1$ to estimate $f(0.9)$.

Solution: The local linearization of $f(x)$ at $x=1$ is $5-2(x-1)$. Plugging in $x=0.9$ yields $5-2(0.9-1)=5+0.2=5.2$.

Answer: $\quad f(0.9) \approx$
b. [2 points] Do you expect your estimate from Part (a) to be an overestimate or underestimate? To receive any credit on this question, you must justify your answer.

Solution: Since $f^{\prime \prime}(1)=3$, the graph of $y=f(x)$ is concave up near $x=1$. Therefore, the tangent line at $x=1$ lies under the graph of $f(x)$ near $x=1$, so we expect this to be an underestimate.
c. [2 points] Use the tangent line approximation of $f^{\prime}(x)$ near $x=1$ to estimate $f^{\prime}(1.1)$.

Solution: The tangent line to $f^{\prime}(x)$ at $x=1$ passes through the point $\left(1, f^{\prime}(1)\right)$ and has slope $f^{\prime \prime}(1)$ (as the slope of the derivative function is given by the second derivative). Therefore, the tangent line to $f^{\prime}(x)$ at $x=1$ is given by the equation

$$
L=-2+3(x-1) .
$$

Plugging in $x=1.1$ yields $-2+3(1.1-1)=-1.7$.

Answer: $f^{\prime}(1.1) \approx$ -1.7
d. [4 points] Suppose that the tangent line approximation of $f(x)$ near $x=8$ estimates $f(8.05)$ to be 3.75 and $f(8.1)$ to be 3.6. Find $f(8)$ and $f^{\prime}(8)$.

Solution: Since the tangent line passes through the points $(8.05,3.75)$ and $(8.1,3.6)$, it has slope

$$
\frac{3.6-3.75}{8.1-8.05}=\frac{-0.15}{0.05}=-3 .
$$

Hence $f^{\prime}(8)=-3$. Moreover, an equation for this tangent line is therefore

$$
L=3.75-3(x-8.05),
$$

so plugging in $x=8$, it passes through the point $(8,3.9)$.
By definition of the tangent line, then, we have that $f(x)$ also passes through the point $(8,3.9)$ and also has slope -3 , so we conclude that $f(8)=3.9$ and $f^{\prime}(8)=-3$.

Answer: $f(8)=$ \qquad and $f^{\prime}(8)=$ \qquad

