2. [9 points] Consider a right triangle with legs of length $x \mathrm{ft}$ and $y \mathrm{ft}$ and hypotenuse of length $z \mathrm{ft}$, as in the following picture:

a. [2 points] Suppose that the perimeter of the triangle is 8 ft . Let $A(x)$ give the area of the triangle, in ft^{2}, as a function of the side length x. In the context of this problem, what is the domain of $A(x)$? Note that you do not need to find a formula for $A(x)$.

Solution: Notice that we can let x be arbitrarily close to 0 and still have a perimeter of 8 ft by making y and z both very close to 4 .
However, since z is always at least as big as x and since y is positive, x cannot be larger than 4 or or else $x+y+z$ would be greater than 8 ft .

Answer:

b. [7 points] Suppose instead that the perimeter of the triangle is allowed to vary, but the area of the triangle is fixed at $3 \mathrm{ft}^{2}$. Let $P(x)$ give the perimeter of the triangle, in ft , as a function of the side length x.
(i) In the context of this problem, what is the domain of $P(x)$?

Solution: $\quad x$ must be positive, but there is no upper bound on x. Even if x is very large, with a small enough y, it is still possible for the triangle to have area $3 \mathrm{ft}^{2}$.

Answer:

(ii) Find a formula for $P(x)$. The variables y and z should not appear in your answer. (This is the equation one would use to find the value(s) of x minimizing the perimeter. You should not do the optimization in this case.)

Solution: The perimeter of the triangle is $x+y+z \mathrm{ft}$. Since we want it to be a function of x only, we need to use other information to eliminate the other variables.

The area is $3 \mathrm{ft}^{2}$, so we have $\frac{1}{2} x y=3$. Solving for y yields $y=\frac{6}{x}$.
Since this is a right triangle, by the Pythagorean Theorem, we have $x^{2}+y^{2}=z^{2}$. Solving for z yields $z=\sqrt{x^{2}+y^{2}}$. Using $y=\frac{6}{x}$ allows us to write z in terms of x as $z=\sqrt{x^{2}+\left(\frac{6}{x}\right)^{2}}$.

Finally, then, we have

$$
P(x)=x+y+z=x+\frac{6}{x}+\sqrt{x^{2}+\left(\frac{6}{x}\right)^{2}} .
$$

Answer: $\quad P(x)=$

$$
x+\frac{6}{x}+\sqrt{x^{2}+\left(\frac{6}{x}\right)^{2}}
$$

