4. [8 points] A ship's captain is standing on the deck while sailing through stormy seas. The rough waters toss the ship about, causing it to rise and fall in a sinusoidal pattern. Suppose that t seconds into the storm, the height of the captain, in feet above sea level, is given by the function

$$
h(t)=15 \cos (k t)+c
$$

where k and c are nonzero constants.
a. [3 points] Find a formula for $v(t)$, the vertical velocity of the captain, in feet per second, as a function of t. The constants k and c may appear in your answer.
Solution: The velocity is the derivative of the height function, so we compute

$$
v(t)=h^{\prime}(t)=-15 k \sin (k t) .
$$

Notice that the Chain Rule gives us a factor of k out front, and since c is an additive constant, it disappears when we take the derivative.
Notice also that $v(t)=\frac{d h}{d t}$ does indeed have units of feet per second, as required.

Answer: $\quad v(t)=$ $-15 k \sin (k t)$
b. [2 points] Find a formula for $v^{\prime}(t)$. The constants k and c may appear in your answer.

$$
\text { Answer: } \quad v^{\prime}(t)=\square-15 k^{2} \cos (k t)
$$

c. [3 points] What is the maximum vertical acceleration experienced by the captain? The constants k and c may appear in your answer. You do not need to justify your answer or show work. Remember to include units.
Solution: The acceleration is just the derivative of the velocity function, which was just computed in the previous part.
Since $v^{\prime}(t)=-15 k^{2} \cos (k t)$ is sinusoidal with midline 0 and amplitude $15 k^{2}$, the maximum value it achieves is $15 k^{2}$.
Since $v^{\prime}(t)=\frac{d v}{d t}$, the units on the acceleration are feet per second per second, or feet per second squared.

Answer: Max vertical acceleration:

