4. [8 points] A ship’s captain is standing on the deck while sailing through stormy seas. The rough waters toss the ship about, causing it to rise and fall in a sinusoidal pattern. Suppose that \(t \) seconds into the storm, the height of the captain, in feet above sea level, is given by the function

\[
h(t) = 15 \cos (kt) + c
\]

where \(k \) and \(c \) are nonzero constants.

a. [3 points] Find a formula for \(v(t) \), the vertical velocity of the captain, in feet per second, as a function of \(t \). The constants \(k \) and \(c \) may appear in your answer.

Solution: The velocity is the derivative of the height function, so we compute

\[
v(t) = h'(t) = -15k \sin (kt) .
\]

Notice that the Chain Rule gives us a factor of \(k \) out front, and since \(c \) is an additive constant, it disappears when we take the derivative.

Notice also that \(v(t) = \frac{dh}{dt} \) does indeed have units of feet per second, as required.

Answer: \(v(t) = -15k \sin (kt) \)

b. [2 points] Find a formula for \(v'(t) \). The constants \(k \) and \(c \) may appear in your answer.

Answer: \(v'(t) = -15k^2 \cos (kt) \)

c. [3 points] What is the maximum vertical acceleration experienced by the captain? The constants \(k \) and \(c \) may appear in your answer. You do not need to justify your answer or show work. Remember to include units.

Solution: The acceleration is just the derivative of the velocity function, which was just computed in the previous part.

Since \(v'(t) = -15k^2 \cos (kt) \) is sinusoidal with midline 0 and amplitude \(15k^2 \), the maximum value it achieves is \(15k^2 \).

Since \(v'(t) = \frac{dv}{dt} \), the units on the acceleration are feet per second per second, or feet per second squared.

Answer: Max vertical acceleration: \(15k^2 \text{ ft/s}^2 \)