5. [13 points] Suppose $f(x)$ is a function defined for all x whose derivative and second derivative are given by

$$
f^{\prime}(x)=\frac{(x+2)^{2}(x-3)}{(x+1)^{1 / 3}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{2(x+2)(x-1)(4 x+3)}{3(x+1)^{4 / 3}} .
$$

a. [2 points] Find the x-coordinates of all critical points of $f(x)$. If there are none, write none.

Solution: Critical points of $f(x)$ occur where $f^{\prime}(x)$ is zero or undefined. $f^{\prime}(x)$ is zero when the numerator is zero, at $x=-2$ and $x=3 . f^{\prime}(x)$ is undefined when the denominator is zero, at $x=-1$. Therefore, $x=-2,-1,3$ are the critical points of $f(x)$.

Answer: Critical point(s) at $x=$ $-2,-1,3$
b. [6 points] Find the x-coordinates of all local extrema of $f(x)$.

If there are none of a particular type, write none.
Justify your answers, and be sure to show enough evidence to demonstrate that you have found all local extrema.
Solution: To classify the critical points, we use the First Derivative Test, so we look at the sign of $f^{\prime}(x)$ before and after each critical point.
For $x<-2,(x+2),(x-3)$, and $(x+1)$ are all negative, so $f^{\prime}(x)=\frac{-^{2}--}{-}=+$ is positive.
Similarly, for $-2<x<-1$, we have $f^{\prime}(x)=\frac{{t^{2}-}_{-}^{-}}{=+}$.
For $-1<x<3$, we have $f^{\prime}(x)=\frac{ \pm^{2}--}{+}=-$.
For $x>3$, we have $f^{\prime}(x)=\frac{t^{2} \cdot+}{+}=+$.
Summarizing on a number line, we see:

We see that $f^{\prime}(x)$ does not change sign at $x=-2$, so this point is not a local extremum. At $x=-1, f^{\prime}(x)$ changes from positive to negative, so $x=-1$ is a local maximum. Finally, at $x=3, f^{\prime}(x)$ changes from negative to positive, so $x=3$ is a local minimum.

Note that we could use the Second Derivative Test as well, but it would be inconclusive at $x=-2$, so we would have to resort to the First Derivative Test to classify that critical point.

Answer: \quad Local $\min (\mathrm{s})$ at $x=\longrightarrow 3$
Answer: Local max(es) at $x=\square-1$
c. [5 points] Find the x-coordinates of all inflection points of $f(x)$. If there are none, write none. Justify your answers, and be sure to show enough evidence to demonstrate that you have found all inflection points.
Solution: Inflection points of $f(x)$ can occur whenever $f^{\prime \prime}(x)$ is zero or undefined. In this case, $f^{\prime \prime}(x)$ is zero at $x=-2,-3 / 4$, and 1 and undefined at $x=-1$. We must check whether the sign of $f^{\prime \prime}(x)$ actually changes at each of these points.
For $x<-2$, we have $f^{\prime \prime}(x)=\frac{-\cdots-\cdot}{+}=-$.
For $-2<x<-1$, we have $f^{\prime \prime}(x)=\frac{+\cdots-\cdot}{+}=+$.
For $-1<x<-3 / 4$, we have $f^{\prime \prime}(x)=\frac{+\cdots \cdot-}{+}=+$.
For $-3 / 4<x<1$, we have $f^{\prime \prime}(x)=\frac{+\cdots \cdot+}{+}=-$.
For $x>1$, we have $f^{\prime \prime}(x)=\frac{+\cdot+\cdot+}{+}=-$.
Summarizing on a number line, we see:

Because $f^{\prime \prime}(x)$ does not change sign at $x=-1$, this is not an inflection point. Since $f^{\prime \prime}(x)$ changes sign at $x=-2,-3 / 4$, and 1 , we conclude that these are the inflection points of $f(x)$.

Answer: Inflection point(s) at $x=$

$$
-2,-3 / 4,1
$$

