7. [5 points] Let

$$
s(t)= \begin{cases}5 t^{2} & \text { if } t \leq 3 \\ p+c(t-3) & \text { if } t>3\end{cases}
$$

be a differentiable function, where p and c are constants.
a. [3 points] Find the values of p and c.

Solution: Since $s(t)$ is differentiable, it is also continuous. By continuity, the two parts must agree at $t=3$, so we have

$$
5 \cdot 3^{2}=p+c(3-3)=p,
$$

or $p=45$.
By differentiability, $s^{\prime}(t)$ must exist at $t=3$. For $t<3$, we have $s^{\prime}(t)=10 t$, and for $t>3$, we have $s^{\prime}(t)=c$. To be differentiable at $t=3$, these two must agree at $t=3$, so we have

$$
10 \cdot 3=c,
$$

or $c=30$.
Answer: $p=$ \qquad and $c=$
b. [2 points] Is $s^{\prime}(t)$ differentiable at $t=3$?

To receive any credit on this question, you must justify your answer.
Solution: No. We saw above that $s^{\prime}(t)=\left\{\begin{array}{ll}10 t & \text { if } t \leq 3 \\ 30 & \text { if } t>3\end{array}\right.$.
The graph of $y=s^{\prime}(t)$ therefore looks like

which has a sharp corner at $t=3$.
8. [6 points] Find a formula for $\frac{d y}{d x}$ for the implicit function $a x^{2}+x y^{2}+b \ln y=c$. The constants a, b, and c may appear in your answer.

Solution: Applying $\frac{d}{d x}$ to both sides of the given equation, we have

$$
2 a x+y^{2}+2 x y \frac{d y}{d x}+\frac{b}{y} \frac{d y}{d x}=0 .
$$

Collecting all the terms involving $\frac{d y}{d x}$ on one side and then factoring it out, we find

$$
\frac{d y}{d x}\left(2 x y+\frac{b}{y}\right)=-2 a x-y^{2}
$$

and hence

$$
\frac{d y}{d x}=\frac{-2 a x-y^{2}}{2 x y+\frac{b}{y}} .
$$

Answer: $\frac{d y}{d x}=$ \qquad

