7. [5 points] Let
\[s(t) = \begin{cases}
5t^2 & \text{if } t \leq 3 \\
p + c(t - 3) & \text{if } t > 3
\end{cases} \]
be a differentiable function, where \(p \) and \(c \) are constants.

a. [3 points] Find the values of \(p \) and \(c \).

\[\text{Solution: Since } s(t) \text{ is differentiable, it is also continuous. By continuity, the two parts must agree at } t = 3, \text{ so we have} \]
\[5 \cdot 3^2 = p + c(3 - 3) = p, \]
or \(p = 45 \).

By differentiability, \(s'(t) \) must exist at \(t = 3 \). For \(t < 3 \), we have \(s'(t) = 10t \), and for \(t > 3 \), we have \(s'(t) = c \). To be differentiable at \(t = 3 \), these two must agree at \(t = 3 \), so we have
\[10 \cdot 3 = c, \]
or \(c = 30 \).

\[\text{Answer: } p = \boxed{45} \text{ and } c = \boxed{30} \]

b. [2 points] Is \(s'(t) \) differentiable at \(t = 3 \)?

To receive any credit on this question, you must justify your answer.

\[\text{Solution: No. We saw above that } s'(t) = \begin{cases}
10t & \text{if } t \leq 3 \\
30 & \text{if } t > 3
\end{cases} \]

The graph of \(y = s'(t) \) therefore looks like

\[\text{which has a sharp corner at } t = 3. \]

8. [6 points] Find a formula for \(\frac{dy}{dx} \) for the implicit function \(ax^2 + xy^2 + b \ln y = c \).

The constants \(a, b, \) and \(c \) may appear in your answer.

\[\text{Solution: Applying } \frac{d}{dx} \text{ to both sides of the given equation, we have} \]
\[2ax + y^2 + 2xy \frac{dy}{dx} + \frac{b}{y} \frac{dy}{dx} = 0. \]

Collecting all the terms involving \(\frac{dy}{dx} \) on one side and then factoring it out, we find
\[\frac{dy}{dx} \left(2xy + \frac{b}{y} \right) = -2ax - y^2 \]
and hence
\[\frac{dy}{dx} = \frac{-2ax - y^2}{2xy + \frac{b}{y}}. \]

\[\text{Answer: } \frac{dy}{dx} = \frac{-2ax - y^2}{2xy + \frac{b}{y}}. \]