9. [10 points] After a long, cold winter, a ship's captain sails across Lake Michigan to Chicago. Upon arrival, the captain hosts a party on board to celebrate the arrival of spring. The party begins at exactly 6 pm and ends at exactly midnight. Let $N(t)$ be the noise level, in decibels, of the ship captain's party t hours after it begins. During the party, a formula for $N(t)$ is given by

$$
N(t)=0.5 t^{4}-4 t^{3}+7 t^{2}+60 .
$$

a. [8 points] Find the exact values of t that minimize and maximize $N(t)$ on the interval $[0,6]$. Use calculus to find your answers, and be sure to show enough evidence that the points you find are indeed global extrema.
Solution: By the Extreme Value Theorem, there will be both a global minimum and a global maximum, and they will occur at either the end points or the critical points. So we begin by finding the critical points.
We have $N^{\prime}(t)=2 t^{3}-12 t^{2}+14 t=2 t\left(t^{2}-6 t+7\right)$. There are no points where this is undefined, so our only critical points are at the zeros. We immediately see that $t=0$ is a zero; for the others, we use the Quadratic Formula to find two more zeros at

$$
t=\frac{6 \pm \sqrt{6^{2}-28}}{2}=3 \pm \sqrt{2} .
$$

Our critical points are therefore $t=0,3-\sqrt{2}$, and $3+\sqrt{2}$.
To determine the global extrema, then, we compare the values of $N(t)$ at all critical points and end points of our interval:

$$
\begin{array}{c|c|c|c|c}
t & 0 & 3-\sqrt{2} & 3+\sqrt{2} & 6 \\
\hline N(t) & 60 & 64.8 & 42.2 & 96
\end{array}
$$

Since the smallest value of $N(t)$ occurs at $t=3+\sqrt{2}$, this is our global minimum, and since the largest value of $N(t)$ occurs at $t=6$, this is our global maximum.
(For each answer blank below, write NONE in the answer blank if appropriate.)

Answer: \quad Global $\min (\mathrm{s})$ at exactly $t=\longrightarrow 3+\sqrt{2}$

Answer: Global $\max (\mathrm{es})$ at exactly $t=\square 6$
b. [2 points] How loud does the captain's party get? Remember to include units.

Solution: We just saw that the maximum value of this function occurs at $t=6$, when $N(6)=96$. Therefore, the loudest the captain's party gets is 96 decibels.

